775 research outputs found

    Inductively shunted transmon qubit with tunable transverse and longitudinal coupling

    Full text link
    We present the design of an inductively shunted transmon qubit with flux-tunable coupling to an embedded harmonic mode. This circuit construction offers the possibility to flux-choose between pure transverse and pure longitudinal coupling, that is coupling to the σx\sigma_x or σz\sigma_z degree of freedom of the qubit. While transverse coupling is the coupling type that is most commonly used for superconducting qubits, the inherently different longitudinal coupling has some remarkable advantages both for readout and for the scalability of a circuit. Being able to choose between both kinds of coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa. We provide a detailed analysis of the system's behavior using realistic parameters, along with a proposal for the physical implementation of a prototype device.Comment: 14 pages, 14 figure

    Design of graphite and the Polyhedral Compilation Package

    No full text
    Graphite is the loop transformation framework that was introduced in GCC 4.4. This paper gives a detailed description of the design and future directions of this infrastructure. Graphite uses the polyhedral model as the internal representation (GPOLY). The plan is to create a polyhedral compilation package (PCP) that will provide loop optimization and analysis capabilities to GCC. This package will be separated from GIMPLE via an interface language that is restricted to express only what GPOLY can represent. The interface language is a set of data structures that encodes the control flow and memory accesses of a code region. A syntax for the language is also defined to facilitate debugging and testing

    Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking

    Full text link
    Owning to the sub-standards being developed by IEEE Time-Sensitive Networking (TSN) Task Group, the traditional IEEE 802.1 Ethernet is enhanced to support real-time dependable communications for future time- and safety-critical applications. Several sub-standards have been recently proposed that introduce various traffic shapers (e.g., Time-Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), Credit-Based Shaper (CBS), Strict Priority (SP)) for flow control mechanisms of queuing and scheduling, targeting different application requirements. These shapers can be used in isolation or in combination and there is limited work that analyzes, evaluates and compares their performance, which makes it challenging for end-users to choose the right combination for their applications. This paper aims at (i) quantitatively comparing various traffic shapers and their combinations, (ii) summarizing, classifying and extending the architectures of individual and combined traffic shapers and their Network calculus (NC)-based performance analysis methods and (iii) filling the gap in the timing analysis research on handling two novel hybrid architectures of combined traffic shapers, i.e., TAS+ATS+SP and TAS+ATS+CBS. A large number of experiments, using both synthetic and realistic test cases, are carried out for quantitative performance comparisons of various individual and combined traffic shapers, from the perspective of upper bounds of delay, backlog and jitter. To the best of our knowledge, we are the first to quantitatively compare the performance of the main traffic shapers in TSN. The paper aims at supporting the researchers and practitioners in the selection of suitable TSN sub-protocols for their use cases

    In and Out of SSA : a Denotational Specification

    No full text
    International audienceWe present non-standard denotational specifications of the SSA form and of its conversion processes from and to imperative programming languages. Thus, we provide a strong mathematical foundation for this intermediate code representation language used in modern compilers such as GCC or Intel CC. More specifically, we provide (1) a new functional approach to SSA, the Static Single Assignment form, together with its denotational semantics, (2) a collecting denotational semantics for a simple imperative language Imp, (3) a non-standard denotational semantics specifying the conversion of Imp to SSA and (4) a non-standard denotational semantics for the reverse SSA to Imp conversion process. These translations are proven correct, ensuring that the structure of the memory states manipulated by imperative constructs is preserved in compilers' middle ends that use the SSA form as control-flow data representation. Interestingly, a s unexpected by-products of our conversion procedures, we offer (1) a new proof of the reducibility of the RAM computing model to the domain of Kleene's partial recursive functions, to which SSA is strongly related, and, on a more practical note, (2) a new algorithm to perform program slicing in imperative programming languages. All these specifications have been prototyped using GNU Common Lisp. These fundamental results prove that the widely used SSA technology is sound. Our formal denotational framework further suggests that the SSA form could become a target of choice for other optimization analysis techniques such as abstract interpretation or partial evaluation. Indeed, since the SSA form is language-independent, the resulting optimizations would be automatically enabled for any source language supported by compilers such as GCC

    An argon ion beam milling process for native AlOx\text{AlO}_\text{x} layers enabling coherent superconducting contacts

    Get PDF
    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50mΩμm2\,\mathrm{m}\Omega \cdot \mu \mathrm{m}^2 at a frequency of 4.5 GHz. Resonators for which only 6%6\% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 10610^6 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.Comment: 4 pages, 4 figures, supplementary materia

    Mechanical Properties and Corrosion Behaviour of 316l Stainless Steel Honeycomb Cellular Cores Manufactured by Selective Laser Melting

    Get PDF
    Selective laser technology is an additive technology that can allow for the manufacture of cellular structures using different types of metallic powder with complex applications in industries such as aerospace, automotive and medical implant industries. This paper presents the effect of climate and mechanical stresses on some honeycomb cellular cores, used in sandwich structures made of 316L stainless steel powder by applying the selective laser melting technology. The honeycomb cellular cores have undergone the microhardness testing and the resulting variation obtained from the analyzed samples was 225 ± 15 (HV_{0.3}). The compressive strength and the modulus of elasticity of the cellular structures were determined for flatwise and edgewise compressive stresses. Also, the cellular structures were subjected to accelerated corrosion tests in order to determine their mean life in application use conditions similar to those near seas and oceans. Also, a microstructural evaluation of salt deposits was carried out on the cellular structures subjected to accelerated corrosion tests using a salt spray test chamber
    corecore